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CHIRAL SYNTHESIS OF THE HYDROXY AMINO ACID MOIETY OF AI-77-B
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ABSTRACT : Chiral synthons of the hydroxy aminoc acid moiety of AI-77-B, a potent
antiulcerogenic compound, have been prepared from the known trifluoroacetamide 3 by
reductive opening of the 4,6-0-benzylidene group followed by sequential oxidations at C-1
and C-6. Final oxidation at C-1 (after (-6) to a lactone is shown to proceed in better
overall yield than the reverse process.

The AI-77s are a small group of related substances isolated from the culture broth of
Bacillus pumilus AI-77. The major compound AI-77-B 1 has been shown to have a potent
antiulcerogenic activity against stress ulcers without anticholinergic, antihistaminergic
or central suppressive effects.1»2 The absolute stereostructure of 1 has been determined
from spectral data and by X-ray analysis together with chemical studies.3

The interest in this new class of antiulcer agents has led Shioiri? to complete the first
total synthesis of AI-77-B by coupling the aminodihydroisocoumarin 2 to a protected
hydroxy amino acid moiety (this author has also recently proposed a synthesis of another
protected form of the Tatter5). we report here a new chiral synthesis of the amino acid
part of 1.
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Trifluoroacetamide 3, a known intermediate in the Horton synthesis of L-daunosamine
(easily prepared from methy1-a-D-mannopyranoside6 or from a methy1-a—D-glucopyranoside7)
does have absolute configurations at C-3 and C-4 identical with those found respectively
at C-10’ and C-9’ of 1 . Conversion of 3 to a suitably protected form of the amino acid
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moiety of 1 requires therefore oxidation at C-1 and C-6 of 3, after selective protection
of the alcohol group at C-4. For this purpose the reductive cleavage of the 4,6-0-
benzylidene group was considered. This reaction is known to depend on the nature of the
substituent at C-3 and on the reducing agent : the presence of a bulky group at C-3
and/or the use of NaBH?,CN-HC18 favor the formation of a 6-0-benzyl derivative (e.g. 5)
while the presence of an OH group and/or the use of Lewis acid (A1C13) favor the 4-0-
benzyl isomer? (e.g. 4). Treatment of 3 with Et351H~T1C1410 for 30 min at -70°C affords a
single compound 511 in 89% isolated yield. The direction of hydrogenolysis is
unambiguously demonstrated by benzoylation of the alcohol function at C-4 to 61l (82%)
which is characterized by a doublet of doublet (Jy_ 4 p_5=10.6 Hz and Jy_ 4 .3=4.0 Hz)
centered at 5.31 ppm for H-4. The unexpected formation of 5 results from complexation of
the more hindered 0-4. The presence of a vicinal nitrogen atom is crucial for this
process since the opposite mode of opening has been observed for benzoate 8 using the
same conditions.12
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Starting from 6, two strategies may be used to synthetize AI-77-B and analogs : either
preparation of a fully oxidized chiron such as 13, or preparation of acid 15 followed by
oxidation at C-1 after derivatization. These will be successively discussed.

Hydrolysis of 6 to 9 turns out to be tedious : under the best conditions (CF4C80H/H,0 :
80/20, 20°C, 6 days) there is obtained 61% of 911, mp 166-167°C together with 26% of
unreacted starting material.l3 oOxidation of 9 using Fétizon’s reagent cleanly affords
Tactone 1111, mp 45°C (98%), whose benzyl group is then cleaved (Hs, Pd/C) to give 1211,
mp 72-75°C (63%).14
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Final oxidation of the primary alcohol group to acid 13 was difficult to achievel® : the
t-butyl ester 1411, mp 141-143°C, could be obtained in only 25% yield using Corey's
conditions1® (CrOg/pyridin (1/2)-Acy0-tBuOH, CHaCl,/DMF : 80/20, 20°C, 16h). The Tow
yield in this last step17 and the difficulties encountered in the hydrolysis of 6 prompt
us to study the second strategy (vide infra).

Hydrogenolysis of 6 gives alcohol 711 (Hp, Pd/C, 98%) which can be efficiently converted,
using cat. RuCl3-NalOy (4.1 eq.)-(CHaCN/CHyCla/Hp0 : 3/2/2, 20°C, 3h)!8, to acid 15 and
then to ester 1611, mp 60-61°C, after treatment with CHoNy, (86% overall). After
hydrolysis (CFCOOH/H,0 : 80/20, 20°C, overnight) to 1711 (57% together with 17% of 16)12
the desired lactone 18l is obtained in 98% yield after oxidation using excess Bro-CaCOq
(CHyCN/H0 @ 5/1).19
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15 R = Me, R' = H 18

16 R = R' = Me

17 R = H, R' = Me
In conclusion the conversion of the readily available amide 3 to useful chirons for
synthesis of AI-77s has been completed in a few steps. Formation of the lactone after

1

side-chain oxidation appears to be more efficient than the reverse process.
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(dd, J = 17.7 and 6.2 Hz, H'-2), 3.89 (dd, J = 12.4 and 2 Hz, H-6), 3.98 (dd, J = 12
and 3 Hz, H'-6), 4.72 (g, J = 3 Hz, H-5), 5.03 (m, H-3), 5.55 (t, J = 3 Hz, H-4), 7.3
(d, NH), 7.47 (%, J = 7.5 Hz, 2H), 7.62 (t, J = 7.5 Hz, 1H), 7.99 (d, J = 7.5 Hz, ZH),
14 : mp 141-143°C, [elp - 46° (c 0.6, CHCT3). NMR : 1.59 (s, 9H), 2 ( dd, J = 17.8 and
11.5 Hz, H-2), 3.02 (dd, J = 17.8 and 7.1 Hz, H’ -2), 4.55 (m, H-3); 5.11 (d, = 2.4 Hz,
H-5), 5.70 (t, J = 2.4 Hz, H-4), 7.18 (d, J = 7.4 Hz, NH), 7.47 (t, J = 7.4 Hz, 2H), 7.63
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), 4.84 (m, H-3), 5.00 (d, J = 2.8 Hz, H-1), 5.37 (dd, J = 10.4 and 4 Hz), 7.42 (t, J
Hz, 2H), 7.57 (t, J = 7.4 Hz, 1H), 7.92 (d, J = 7.4 Hz, 2H).
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